
UCSC Spring 2017 - Review Problems for the Final - Solutions AMS 5

Comment: To prepare for the final exam, you should study these problems, the homework
from chapters 26 - 28, as well as reviewing the material from quizzes 1 – 4. The final exam will
be comprehensive, but with an emphasis on untested material.

1. Chapter 26, exercise set F, problems 4 and 5.

See solutions at the back of the book.

2. Every day, the quality control engineer for ACME Dairies randomly selects 25 half-gallon (64 fl oz)
cartons of whole milk from the day’s production run and carefully measures the quantity of milk in
each one. If the average amount of milk in this sample differs significantly from 64 fl oz, at the 1%
significance level, she recalibrates the carton-filling apparatus.

(a) What does ‘...significantly... at the 1% significance level’ mean?

This is statistical significance. In this case, it means that assuming the null hypothesis, the probabil-
ity is 1% or less, that the difference between the sample average and the (null-hypothetical) expected
average is as or more extreme than the observed difference.

(b) State the null and alternative hypotheses for this test in terms of the appropriate parameter.

H0: The average amount of milk in the daily run of half-gallon cartons is 64 ounces.

H1 : The average amount of milk in the daily run of half-gallon cartons is not 64 ounces.

(A two-tailed test — H1 does not specify whether the average is greater than or less than 64, just
that it is different than 64.)

(c) Today’s sample of 25 cartons has an average of 64.21 fl oz with a standard deviation of 0.37 fl oz.
What is the test statistic? What is the p-value?

The test statistic here is

t∗ =
(observed average)− (H0-expected average)

SE(average)
=

64.21− 64

SD+/
√

25
≈ 0.21

0.378/5
≈ 2.78

Comments: The sample size n = 25 is relatively small and we do not know the SD of the error-box,
so we approximate it with the SD+ of the sample, this also implies that the test statistic follows the
t-distribution with 25− 1 = 24 degrees of freedom.

The p-value is estimated by looking in the row for 24 degrees of freedom in the t-table in the textbook.
The area to the right of t∗ = 2.78 is between 1% and 0.5% (because 2.49 < 2.78 < 2.80). This is a
two-tailed test, because we don’t have an expected direction for the difference — a priori, it could
be positive or negative. This means that the p-value is two times the entry in the table, i.e.,

1% < p∗ < 2%.

(Using more precise tools, you would find that p∗ ≈ 1.04%.)

(d) What do you conclude?

Since p∗ > 1% (though it’s very close!), the ACME Dairies protocol says that the machines do not
need to be recalibrated.

(e) What additional assumptions, if any, are needed to justify the methods (and conclusions) of this
test of significance?

To justify the use of the t-test, we must assume that the error-box associated with the filling of the
milk cartons follows the normal curve (once the errors are converted to standard units).
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3. A marketing firm wants to survey a sample of 1400 adults from a large state to estimate the percentage
of adults in the state who prefer streaming movies to watching them on cable TV. Are they more likely
to use (a) a simple random sample, (b) a convenience sample or (c) a multistage cluster sample to choose
the sample?

Explain your answer.

Ideally, they would like to use a simple random sample, for which the standard errors are smallest, but
these are difficult to produce in practice from large populations. From a practical point of view of the
three options given, they are most likely to use a multistage cluster sample (if they care about accuracy).

4. A researcher claims to have found a strong correlation (r = 0.88) between a person’s blood alcohol
content (BAC), one hour after drinking, and the type of alcohol they consume (beer, wine or hard
liquor).

What is wrong with the researcher’s claim? What would make more sense here? Explain.

The correlation does not make sense because you can’t compute the correlation between BAC (numerical)
and alcohol type (nonnumerical). There is no way to interpret the number 0.88 (and it is not clear how
it was computed).

The simplest correlation that would make sense here is a correlation between the amount of alcohol
consumed and the BAC an hour later. If one wants to study the effect of the type of alcoholic beverage
and BAC an hour later, a more involved study is needed.

E.g., the researcher could study the effect of each type of alcoholic beverage separately and control for
various confounding factors, like the amount of alcohol that is consumed, weight and gender of the
drinker, etc.

5. Investigators studying the relationship between cigarette smoking and blood pressure in adult men
collected data from 6235 U.S. men aged 20 - 40, and generated the following statistics:

X = 24 SDX = 5.5

Y = 135 SDY = 9 r = 0.7

where X = number of cigarettes per day, and Y = systolic blood pressure, measured in mmHG.

(a) Use the regression method to estimate the average systolic blood pressure for U.S. men, aged 20 -
40 who smoke 20 cigarettes per day. Show your work.

20 cigarettes per day is (24−20)/5.5 ≈ 0.727 SDx below average, so the regression method predicts
that the average systolic blood pressure of men who smoke 20 cigarettes per day will be

0.727× r × SDy = 0.727× 0.7× 9 ≈ 4.58 mmHG

below the average of 135 mmHG. I.e., the predicted average blood pressure for these men is about
130.42 mmHG.

(b) What is the predicted systolic blood pressure of a 28-year old man who smokes 30 cigarettes per
day? Include a ‘give-or-take’ number with your estimate. Show your work.

30 cigarettes per day is (30− 24)/5.5 ≈ 1.09 SDx above average. The regression method says that
the average blood pressure of men (aged 20 - 40) who smoke this much is predicted to be

1.09× 0.7× 9 ≈ 6.87 mmHG

above average, or about 141.87 mmHG.

The SER (root mean square error of regression) for predicting blood pressure from cigarettes per
day is

SER =
√

1− 0.72 × SDy ≈ 6.43,
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so the blood pressure of an individual 28 year old man who smokes 30 cigarettes per day is predicted
to be about 141.87± 6.43 mmHG.

(c) Joseph is a 60-year old man who smokes about 40 cigarettes a day. Is it reasonable to predict
that his systolic blood pressure is somewhere between 147 and 160 mmHG, based on the given
information? Explain your answer.

This is not a question of whether the calculations were done correctly. The data was collected from
men aged 20 - 40, and cannot be used to predict blood pressure for a man whose age is so far outside
the range of ages in the study. Especially given the possible effects of age on blood pressure (blood
pressure tends to increase with age).

6. John Smith is running for office. One week before the election, his campaign manager hires a Polling
firm to survey likely voters. The firm surveyed a simple random sample of 2700 likely voters and found
that 51% favor Smith. They also found that of the 1250 women in the survey, 54% favor Smith.

You may assume that the survey was based on a simple random sample, that the population is in the
millions and that to win the office, the candidate needs to win more than 50% of the votes cast.

(a) What percentage of the men in the survey favor Smith?

675 = 54% × 1250 of the women surveyed favored Smith, and a total of 51% × 2700 = 1377 of
the people surveyed favored him. So, 1377 − 675 = 702 men surveyed favored Smith. A total of
2700− 1250 = 1450 men were surveyed, so

702

1450
× 100% ≈ 48.41%

of the men surveyed favor Smith.

(b) Compute 95% confidence intervals for the percentage of women who favor Smith, the percentage of
men who favor Smith and the percentage of likely voters who favor Smith.

Women: The observed percentage is 54%, and the standard error is

SEW =

√
0.54× 0.46√

1250
× 100% ≈ 1.41%.

The 95% confidence interval for the percentage of women who favor Smith is

(54%± 2SEW ) = (54%± 2.82%).

Men: The observed percentage is 48.41%, and the standard error is

SEM =

√
0.4841× 0.5159√

1450
× 100% ≈ 1.31%.

The 95% confidence interval for the percentage of men who favor Smith is

(48.41%± 2SEM ) = (48.41%± 2.62%).

All: The observed percentage is 51%, and the standard error is

SEA =

√
0.51× 0.49√

2700
× 100% ≈ 0.96%.

The 95% confidence interval for the percentage of all likely voters who favor Smith is

(51%± 2SEA) = (51%± 1.92%).
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7. As part of a class project, a statistics student at a large university (15, 000 students — 9000 men and
6000 women), went to the central plaza of the campus at noon one day, approached 100 students and
asked them where they went to high school. His sample included 51 women and 49 men. Is it likely
that the student’s sampling procedure was like taking a simple random sample? Justify your answer as
precisely as possible (using numbers, probability, etc.).

If the student’s sampling procedure was like taking a simple random sample, then it was like drawing
100 tickets at random, without replacement from a 0-1 box of 15000 tickets, where 60% of the tickets
are 1 s and 40% are 0 s. The question now becomes:

How likely is it to draw 49% 1 s (or less) from a box with 60% 1 s, in 100
random draws?

To answer this question, we use the Normal Approximation. The SD of the box is

SD =
√

0.6× 0.4 ≈ 0.49,

and the SE% for 100 draws from this box is

SE% =
0.49√

100
· 100% = 4.9%.

(Technically, the SE% is slightly smaller, because the draws are done without replacement, but since
there are 15000 tickets in the box and only 100 are drawn, the correction factor is very close to 1.)

According to the normal approximation, the probability of drawing 49% (or fewer) 1 s from this box
with a simple random sample is about equal to the area under the normal curve to the left of

z =
49%− 60%

4.9%
≈ −2.24,

which is approximately 1.25%.

To summarize, the probability that a simple random sample of students from this University would have
49% men (or fewer) is about 1.25%, and we can conclude that the student’s sample in this case was
almost certainly not a simple random sample.

Indeed, from the description, it is clear that this was a sample of convenience (and perhaps biased
towards women).

8. According to the 1999 census, the median household income in the city of San Diego was $46,500. In
2004, a high-end grocery chain hires a statistical research firm to corroborate their marketing consul-
tant’s claim that median household income has gone up since 1999. The research firm takes a simple
random sample of 600 San Diego households and finds that 55% of the sample households have incomes
above $46,500.

Was the consultant right? Frame your answer in terms of an appropriate test of significance.

To answer the question, we use a test of significance.

• Null hypothesis: The median income has not gone up since 1999. I.e., 50% of the households in
San Diego have incomes above $46,500, (and 50% have incomes below this level).

Alternative hypothesis: The median income has gone up, so more than 50% of the households
have incomes above $46,500.

• Null-hypothetical box model: A 0-1 box with a 1 for every household in San Diego (in 2004)

with income above $46,500 and a 0 for every household in San Diego (in 2004) with income below

$46,500. The null hypothesis says that 50% of the tickets in this box are 1 s.
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• Data: The sample percentage of households with incomes above $46,500 is 55%.

• Test statistic: The observed percentage is 55% and the null-hypothetical expected percentage is
50%. Furthermore, the SD of the null-hypothetical box is

√
1/2× 1/2 = 1/2, so the standard error

is SE% =
0.5√
600
× 100% ≈ 2.04%.

Hence the test statistic is

z =
observed % − expected %

SE%
=

55%− 50%

2.04%
≈ 2.45.

• P-value (observed significance level): The P-value here is the area under the normal curve to the

right of z = 2.45 which is about
100%− 98.57%

2
≈ 0.715%.

• Conclusion: The P-value is very low (less than 1%), so we reject the null hypothesis and conclude
that the consultant was right — the median income in 2004 was higher than $46,500.

9. Suppose that a fair die is rolled 3 times.

a. What is the probability that a is observed at least once?

The probability of no s in 3 rolls is

5

6
· 5

6
· 5

6
≈ 57.87%

so the probability of at least one in three rolls is 100%− 57.87% = 42.13%.

b. What is the probability that a is observed exactly once?

If a is observed exactly once, then...

... it occurs on roll one, but not on rolls two and three; or it occurs on roll two, but not on rolls one
or three; or it occurs on roll three, but not on rolls one or two.

Each of these three possibilities has the same probability, namely

1

6
· 5

6
· 5

6
≈ 0.11574,

and all three are mutually exclusive so the probability that exactly one of them occurs is

1

6
· 5

6
· 5

6
+

1

6
· 5

6
· 5

6
+

1

6
· 5

6
· 5

6
≈ 0.3472.

c. What is the probability of that the sum of the three rolls is 4 or 5?

First, we need to find the different configurations of three dice that result in sums of 4 or 5.

(i) The only way to obtain a sum of 4 in three rolls is with one and two s. This can occur in
three ways: , or . Each of these configurations has the same probability, namely
1
6 ·

1
6 ·

1
6 = 1/216, and they are all mutually exclusive, so the probability of a sum of 4 in three rolls is

3× 1

216
=

1

72
≈ 1.389%.

(ii) The only ways to obtain a sum of 5 in three rolls is with (a) two s and one or (b) one
and two s. In other words, the only way to obtain a sum of 5 is with one of the configurations

, , , , or .
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Each of these six configurations has the same probability, namely 1
6 ·

1
6 ·

1
6 = 1/216, and they are all

mutually exclusive so the probability of a sum of 5 in three rolls is

6× 1

216
=

1

36
≈ 2.778%.

Finally, since a sum of 4 and a sum of 5 are mutually exclusive, the probability of a sum of 4 or a
sum of 5 in three rolls is

1

72
+

1

36
=

3

72
=

1

24
≈ 4.167%.

10. Suppose that a fair die is rolled 600 times.

a. What is the expected number of s?

Given that the die is fair, the probability of observing a on any given roll is 1/6, and the expected
number of s is therefore equal to

1

6
· 600 = 100.

b. What is the probability that a is observed between 95 and 105 times?

The SD of the ‘die-box’ is
√

1/6× 5/6 ≈ 0.373, and the SE for the number of s in 600 draws is
SD×

√
600 ≈ 9.129. By the normal approximation, the probability of observing between 95 and 105

s in 600 draws is therefore approximately equal to the area under the normal curve between

94.5− 100

9.129
≈ −0.60 and

105.5− 100

9.129
≈ 0.60

which is 45.15%.

c. What is the probability that more than 110 s are observed?

Once again, we invoke the normal approximation and conclude that this probability is approximately
equal to the area under the normal curve to the right of

110.5− 100

9.129
≈ 1.15

which is
100%− 74.99%

2
= 12.505%.

d. What is the probability that the sum of the 600 rolls is between 2070 and 2130?

Once again, we invoke the normal approximation, but this time it is for the sum of draws from the

box | 1 2 3 4 5 6 |.
The average of this box is (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5 and the SD of this box is√

(1− 3.5)2 + (2− 3.5)2 + (3− 3.5)2 + (4− 3.5)2 + (5− 3.5)2 + (6− 3.5)2

6
≈ 1.708.

The expected value of the sum of 600 draws from this box is 600× 3.5 = 2100 and the standard error
for the sum of 600 draws is SE =

√
600 × SD ≈ 41.833. Using the normal approximation, we find

that

P (2070 ≤ sum of 600 rolls ≤ 2130) ≈ area under NC between
2070− 2100

41.833
and

2130− 2100

41.833
.

Now, 2070−2100
41.833 ≈ −0.717 and 2130−2100

41.833 ≈ 0.717, so the probability we seek is about 53% (between
the table entries for 0.70 and 0.75, closer to the one for 0.70 and rounded).
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11. There are about 25,000 high schools in the United States and each high school has a principal. These
25,000 high schools also employ a total of about one million teachers. As part of a national survey of
education, a simple random sample of 625 high schools is chosen.

(a) In 505 of the sample high schools the principal has an advanced degree. If possible, find an ap-
proximate 95% confidence interval for the percentage of all 25,000 high school principals who have
advanced degrees. If this is not possible, explain why not.

The sample percentage of principals with advanced degrees is 505/625×100% = 80.8%. The sample
SD in this case is

√
0.808× 0.192, so the Standard error (for percentage) is

SE% ≈
√

0.808× 0.192√
625

× 100% ≈ 1.58%.

Hence a 95% confidence interval for the percentage of high schools whose principal has an advanced
degree is

80.8%± 2× 1.58% = 80.8%± 3.16% or (76.64%, 83.96%).

(b) As it turned out, the 625 sample high schools described above employed a total of 12,000 teachers,
of whom 6,500 had advanced degrees. If possible, find an approximate 95% confidence interval for
the percentage of all one million high school teachers with advanced degrees. If this is not possible,
explain why not.

The sample of 12,000 teachers in this hypothetical example is not a simple random sample of U.S.
high school teachers — taking all of the teachers from a random sample of high schools is not the
same thing as a random sample of teachers from the whole country — it is a cluster sample of
teachers. The methods we have been using do not apply in this case, and we cannot find a 95%
confidence interval using these methods.

12. A researcher studying the media consumption habits of U.S. adults suspects that women watch more
‘reality’ shows than men. To test this hypothesis, she surveys a simple random sample of 1225 U.S.
men and a simple random sample of 1444 U.S. women. The men surveyed watched an average of 4.36
hours per week of ‘reality’ shows, with an SD of 1.8 hours per week. The women watched an average
of 4.43 hours per week of ‘reality’ shows, with an SD of 1.7 hours per week.

(a) Formulate appropriate null and alternative hypotheses in terms of a box model to test the re-
searcher’s hypothesis at the 5% significance level.

The null hypothesis says that the women and men watch the same amount of reality shows, on
average. I.e., if µw is the average number of hours/week that women watch reality shows and µm
is the average number of hours/week that men watch reality shows, then the researcher’s hypotheses
are..

H0 : µw = µm, and

H1 : µw > µm.

The box model is that the box for women and the box for men have the same averages.

(b) Find the test statistic and the P -value.

The test statistic is

z∗ =
w̄ − m̄√

SE2
w + SE2

m

,

where w̄ and m̄ are the observed averages for women and men respectively, and SEw and SEm are
the standard errors for women and men respectively. Plugging in the given sample statistics, we
find that

w̄ = 4.43, SEw =
1.7√
1444

≈ 0.0447, m̄ = 4.36 and SEm =
1.8√
1225

≈ 0.0514,
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so

z∗ =
4.43− 4.36√

(0.0447)2 + (0.0514)2
≈ 1.03.

The p-value is equal to the area under the normal curve to the right of z∗ = 1.03, which is about
15%.

(c) Is the researcher right? In what sense? Explain.

The data does not support the researcher’s claim. The difference between the averages for men and
women is small and as the p-value shows in this case, it can be explained reasonably by chance
error.

13. Chapter 27, Review problem 7.

Comment: This problem is similar to the radiation-surgery example in section 4 of chapter 27.

(a) The observed difference between the rates of recidivism is (control - treatment) 49.4%− 48.3% = 1.1%.
The SE% for the control group is

SEc =

√
0.494× 0.506√

154
× 100% ≈ 4%

and the SE% for the treatment group is

SEt =

√
0.483× 0.517√

592
× 100% ≈ 2%.

so the SE for the difference is

SEdiff =
√

(0.04)2 + (0.02)2 × 100% ≈ 4.5%.

This means that the test statistic is

z∗ =
1.1%

4.5%
≈ 0.24,

and the p-value (from the table) is about 40%.

Conclusion: The observed difference in recidivism rates can be explained by chance — the income
support did not seem to have a benefit.

(b) The observed difference between the average number of weeks worked (control - treatment) is 24.3−16.8 =
7.5. The SE for the control group is

SEc =
17.3√
154
≈ 1.394

and the SE for the treatment group is

SEt =
15.9√
592
≈ 0.653

so the SE for the difference is

SEdiff =
√

(1.394)2 + (0.653)2 ≈ 1.54.

The test statistic is

z∗ =
7.5

1.54
≈ 4.87

so the p-value is effectively 0%.

Conclusion: The observed difference in weeks-worked between the control and treatment group is not
due to chance error. The released prisoners who received income support tended to work less than those
who did not. Perhaps this explains the failure of the program to reduce recidivism.
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