
The Central Limit Theorem

Suppose n tickets are drawn at random with replacement from a box of

numbered tickets.

The central limit theorem says that when the probability

histogram for the sum of the draws is rescaled to stan-

dard units (using the expected value of the sum and the stan-

dard error for the sum) then the rescaled histogram is well-

approximated by the normal curve, as long as the number

of draws, n, is large enough.
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Or, using the ‘box-of-sums’ interpretation...

Suppose n tickets are drawn at random with replacement from a box of

numbered tickets.

The central limit theorem says that when the histogram for

the box-of-sums is rescaled to standard units — using the

average of the box-of-sums (= expected value of the sum) and

the SD of the box-of-sums (= standard error for the sum) —

then the rescaled histogram is well-approximated by the nor-

mal curve, as long as the number of draws, n, is large

enough.
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Illustration: Histograms for the box-of-sums corresponding to 25,

50 and 100 draws (made at random, with replacement) from the box
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In practical terms, the Central Limit Theorem says:

if n tickets are drawn at random, with replacement from a box of num-

bered tickets and if n is large enough, then

P (α ≤ sum of draws ≤ β) ≈


area under the normal curve between

α− EV

SE
and

β − EV

SE

where

• EV = nnn ·(average of box) is the expected value of the sum, and

• SE =
√
n
√
n
√
n · (SD of the box) is the standard error for the sum.

This is called the Normal Approximation.

In particular, if n is large enough, then the normal approximation gives

• P (EV − SE < sum < EV + SE) ≈ 68%.

• P (EV − 2SE < sum < EV + 2SE) ≈ 95.5%.

• P (EV − 3SE < sum < EV + 3SE) ≈ 99.7%.
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Question: A fair coin is tossed 10,000 times. What is the probability

that we observe Heads between 4900 and 5100 times?

Answer:

• The number of Heads in 10,000 tosses is like the sum of 10,000

random draws (with replacement) from the box | 1 0 | .

• The average of this box is 1/2, and the SD =
√

1
2 ·

1
2 = 1

2 .

• EV = 1
2 × 10, 000 = 5000 and SE = SD ×

√
10, 000 = 50.

• By the normal approximation,

P (4900 ≤(number of Heads in 10,000 tosses) ≤ 5100)

≈ area under normal curve between − 2 and 2

= 95.5%
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Question: A fair die is rolled 900 times, what is the chance that will

be observed between 140 and 180 times?

Answer:

• The number of in 900 rolls of a fair die is like the sum of 900

random draws, with replacement from the box | 1 0 0 0 0 0 |.
• The average of this box is 1/6, and the SD =

√
1
6 ·

5
6 ≈ 0.373.

• EV = 1
6 × 900 = 150 and SE = SD ×

√
900 ≈ 11.18.

• By the normal approximation,

P (140 ≤(number of in 900 rolls) ≤ 180)

≈ area under normal curve between − 0.89 and 2.68

=
1

2
(T (2.68) + T (0.89)) ≈ 81%

(The notation T (x) means the entry in the FPP normal table corre-

sponding to x standard units.)
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The continuity correction

Example. A fair coin is tossed 100 times, what is the probability that

H is observed between 48 and 54 times?

Answer:

• The number of Heads in 100 tosses is like the sum of 100 random

draws (with replacement) from the box | 1 0 | .

• The average of this box is 1/2, and the SD =
√

1
2 ·

1
2 = 1

2 .

• EV = 1
2 × 100 = 50 and SE = SD ×

√
100 = 5.

• By the normal approximation,

P (48 ≤(number of Heads in 100 tosses) ≤ 53)

≈ area under normal curve between − 2

5
and

3

5

=
1

2
T (0.4) +

1

2
T (0.6) = 38.115%
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Checking our approximate answer using an on-line calculator (for bino-

mial probabilities):

P (48 ≤ (number of Heads in 100 tosses) ≤ 53) = 44.93%.

The normal approximation appears to have missed the mark by quite a

bit!

What’s wrong?

Answer: The normal approximation is based on the idea that we

approximate the area under a probability histogram with the normal

curve...
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We want to approximate the area of the bars over 48, 49, 50, 51, 52 and

53...
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... and we used the normal curve to approximate the area between the

dashed lines below:
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But this means that we cut off half of the left-most and right-most bars!

The region we should be approximating is between the dashed blue lines

below: from 47.5 to 53.5
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I.e., the more accurate approximation is

P (48 ≤(number of Heads in 100 tosses) ≤ 53)

≈ area under normal curve between − 2.5

5
and

3.5

5

=
1

2
T (0.5) +

1

2
T (0.7) = 44.95%

More generally, if we draw n tickets (at random with replacement) from

a 0-1 box and we want to approximate P (a ≤ # of 1 s ≤ b) we should

use the continuity correction:

P (a ≤ # of 1 s ≤ b) ≈


area under the normal curve between

(a− 0.5)− EV

SE
and

(b+ 0.5)− EV

SE

In this case EV = np and SE =
√
n
√
p(1− p), where p is the proportion

of 1 s in the box.
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Comment: The continuity correction becomes less important as the

number of draws from the box becomes larger, because the differencs

between
(a− 0.5)− np
√
n
√
p(1− p)

and
a− np

√
n
√
p(1− p)

and
(b+ 0.5)− np
√
n
√
p(1− p)

and
b− np

√
n
√
p(1− p)

become very small.

Specifically, the differences are

0.5
√
n
√
p(1− p)

which become smaller and smaller as n gets bigger.
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