1. Three tickets are drawn at random with replacement from the box | 1 | 2 | 2 |
| :--- | :--- | :--- | . Find the probability that...

(a) $(3 \mathrm{pts}) \ldots$ all 3 tickets are 1 s .

The probability of $a \boxed{1}$ on each draw is $1 / 4$, and since the three draws are independent (because they are taken with replacement), the probability that all three tickets are $\boxed{1} s$ is

$$
P(\boxed{1} \text { and } \boxed{1} \text { and } \boxed{1})=P(\boxed{1}) P(\boxed{1}) P(\boxed{1})=\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}=\frac{1}{64}
$$

(b) (3 pts) ... at least one of the 3 tickets is a 2 .

The opposite of 'at least one 2 in three draws' is 'no 2 s in three draws', so

$$
P(\text { at least one } \boxed{2} \text { in three draws })=1-P(n o \boxed{2} s \text { in three draws }) \text {. }
$$

On any draw the probability that a | 2 |
| :---: |
| is not drawn is $1 / 2$, so |

$$
P(n o \boxed{2} s \text { in three draws })=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

so

$$
P(\text { at least one } \boxed{2} \text { in three draws })=1-P(n o \longdiv { 2 } s \text { in three draws })=1-\frac{1}{8}=\frac{7}{8} .
$$

(c) (4 pts) ... exactly one of the 3 tickets is a 3 .
'Exactly one 3 in three draws' can occur in three different ways:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 3 & \text { not } 3 & \text { not } 3, & \text { not } 3 & 3 & \text { not } 3 & \text { or } \begin{array}{l}
\text { not } 3
\end{array} \text { not } 3 .
\end{array}
$$

The probability of these three sequences of draws are all the same, namely

$$
P\left(\begin{array}{|c|c|}
\hline 3 & \text { not } 3 \\
\text { not } 3
\end{array}\right)=P\left(\begin{array}{|r|r|}
\text { not } 3 & 3 \\
n o t ~ & \text { not } 3
\end{array}\right)=P(n o t 3,3)=\frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}=\frac{3}{4} \cdot \frac{1}{4} \cdot \frac{3}{4}=\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4}=\frac{9}{64},
$$

and since these three sequences are mutually exclusive,

2. (5 pts) One ticket is drawn at random from each of the two boxes

$$
A \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 2 & 5 \\
\hline
\end{array} \quad B \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline
\end{array} .
$$

Find the probability that the number drawn from box A is bigger than the number drawn from box B.
There are 16 equally likely pairs of tickets that can be drawn from these two boxes:

$$
\begin{aligned}
& (\boxed{A 5}, \boxed{B 4}),(\boxed{A 5}, \boxed{B 3}),(\boxed{A 5}, \boxed{B 2}),(\boxed{A 5}, \boxed{B 1}), \\
& (\boxed{A 2}, \boxed{B 4}),(\boxed{A 2}, \boxed{B 3}),(\boxed{A 2}, \boxed{B 2}),(\boxed{A 2}, \boxed{B 1}) \text {, } \\
& (\boxed{A 2}, \boxed{B 4}),(\boxed{A 2}, \boxed{B 3}),(\boxed{A 2}, \boxed{B 2}),(\boxed{A 2}, \boxed{B 1}), \\
& (\boxed{A 1}, \boxed{B 4}),(\boxed{A 1}, \boxed{B 3}),(\boxed{A 1}, \boxed{B 2}),(\boxed{A 1}, \boxed{B 1}) .
\end{aligned}
$$

Of these 16 equally likely pairs, the four pairs in the first row and the last pair in each of the second and third rows satisfy the condition $A>B$. None of the other pairs satisfy this condition, so

$$
P(A>B)=\frac{6}{16}=\frac{3}{8}
$$

3. (5 pts) Two tickets are drawn at random with replacement from the box

True or False: The probability that the first ticket is $\boldsymbol{\oplus}$ or the second ticket is $\boldsymbol{\otimes}$ is $1 / 4+1 / 4=1 / 2$.
False. It is true that

$$
P(\text { the second ticket is } \boxed{\boldsymbol{Q}})=\frac{1}{4}=P(\text { the first ticket is } \boldsymbol{\oplus})
$$

but the probability that one or the other of them occurs is not equal to the sum of the individual probabilities because the events 'first ticket is $\boldsymbol{\oplus}$ ' and 'the second ticket is $\boldsymbol{\AA}$ ' are not mutually exclusive. It is possible that both events occur.
(The correct value of the probability is $1 / 4+1 / 4-1 / 16=7 / 16$.)

