
Example: Joe and Mike are arguing over their box of tickets — a large box

with hundreds of thousands of tickets in it. Many years ago they had looked

at all the tickets, and found that the average of the box was 15 with an SD

of 5.3. But over the years tickets had been lost and other tickets had been

added.

Joe thinks that the average of the box is still 15, but Mike thinks that it

isn’t — he thinks that most of the newer tickets that they have added over

the years have had values greater than 15.

They decide to collect a simple random sample from the box and settle their

argument by looking at the sample average which they both agree should be

close to the box average.
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Data: Sample size: n = 400 tickets; Sample average x = 15.6; Sample

standard deviation: SD = 5.2.

Mike: “See — the sample average is bigger than your guess of 15... I’m

right!”

Joe: “No... 15.6 − 15 = 0.6, that’s small: that difference can be explained

by chance error. The sample SD is 5.2!”

Mike: “Hmmm... No, wait! The sample SD is not the right estimate for the

chance error. We need to look at the SE !”

Joe: (grumbling) “Ok...”
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They both compute: SE =
SD(box)√

n
≈ SD(sample)√

n
=

5.2

20
= 0.26

(*) Why do they use the sample SD, instead of the original box SD = 5.3?

Mike smiles and Joe frowns... Why?

It is very unlikely to see a sample average that is more than 2 SEs away

from the expected value = box average. In this case, the sample average

15.6 is 0.6/0.26 ≈ 2.3 SEs bigger than 15. Moreover, the sample averages

follow the normal curve approximately, so the probability of observing a

sample average of 15.6 (with a sample SD of 5.2) is approximately equal

to the area under the normal curve to the right of z0 = 2.3, which is

0.5× (100%− T (2.3)) ≈ 1.07%.

If Joe’s guess is correct — that the box average is still 15 — the probability

that a simple random sample would have an average of 15.6 (or more) is about

1.07%. I.e., it is very unlikely that the difference (0.6) between the observed

(sample) average and the hypothetical (box) average can be explained by

chance variation, Mike and Joe agree that a more likely explanation is that

the average of the box is bigger than 15.
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Tests of significance.

A test of significance is a statistical procedure for determining

the likelihood that the difference between an observed value and a

hypothetical ‘expected’ value is due to chance.

• The expected value is computed based on the Null Hypothesis — a

hypothesis about the composition of the box-model for the data. In

many applications, researchers expect the null hypothesis to be false,

and are trying to collect statistical evidence to contradict it.

• The P-value of the test is the probability that the difference between

the observed value and the expected value is due to chance. The P-value

is also called the observed significance level of the test.

• If the P-value is between 1% and 5%, the results are said to be signifi-

cant, and if P is 1% or less, the results are deemed highly significant.

If P is small enough, the null hypothesis is said to be rejected in favor

of the alternative hypothesis.
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The steps:

1. Formulate the null and alternative hypotheses in terms of a box-model

and a parameter associated with this box model (e.g., the average of the

box or the percentage of 1 s in the box).

2. Choose and appropriate test statistic to measure the difference between

the observed value(s) and null-hypothetical expected value(s). Then,

collect the data, and calculate the value of the test statistic.

3. Find the significance level (p-value) — this is the probability that the dif-

ference between the value of the sample statistic and the null-hypothetical

expected value is due to chance error. The nature of the box-model

tells us how to do this.

Comment: In many scenarios, the test statistic follows the normal

distribution. These types of significance tests are called z-tests.

4. Summarize the results and draw any appropriate conclusions.
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Example 1: Joe and Mike’s box. The average of the box is µ.

Hypotheses:

H0 : µ = 15 (this is the null hypothesis)

HA : µ > 15 (this is the alternative hypothesis).

Test statistic: z0 =
x− µ
SE

≈ 15.6− 15

0.26
≈ 2.3

where x = sample average and SE =
box SD√

sample size
≈ sample SD√

sample size
.

P-value: p = area under the normal curve to the right of z0 = 2.3 ≈ 1.07%

Conclusion: The P -value is small enough (the results are significant), that

we reject H0 and conclude that µ > 15.
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Example 2:

• The story: an investigator (Joe) from a marketing research company

believes that the average number (µ) of connected devices per household

in Metropolis is greater than 4. To test this belief he begins with...

• Box model: each household in Metropolis corresponds to a ticket in a

box. The number on the ticket is the number of connected devices in

the household. Then he formulates the ...

• Null Hypothesis. H0 : µ = 4 and the...

• Alternative hypothesis. HA : µ > 4.

Next he determines the...

• Test statistic. In this case, the test statistic is z =
sample average− µ

SE(avg)
,

where the value of µ is prescribed by H0.

(*) This test statistic will follow the normal distribution if the sample is a

simple random sample and the sample size is big enough.

• Finally... He collects data and does the calculations.
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• Sample; A simple random sample of n = 1600 households.

• Sample average: x̄ = 4.2.

Sample standard deviation: SD = 2.7.

• Sample statistic: z =
4.2− 4

SE(avg)
≈ 4.2− 4

2.7/
√

1600
≈ 2.96.

• P-value:

p = area


2.96

p*

 ≈ 0.16%

Comment: The calculation of p is based on the nature of the test

statistic (z follows the normal distribution) and the alternative hypoth-

esis which specifies µ > 4, so we only consider the area under the normal

curve to the right of z = 2.96.

• Conclusion: The result is highly significant, p < 1%. The probability

that the sample average is greater than 4 due to chance error is so small

that we reject the null hypothesis in favor of the alternative.
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Example 3.

• In 2010 the median household income in Metropolis (1.5 million house-

holds) was $33,000.

• Lex Luthor, running for reelection as mayor of Metropolis in 2016, claims

that the policies of his administration have raised the median household

income. As evidence, he cites a recent survey of 550 randomly selected

households, where the median income was $35,000.

Is this a valid claim?

• To test this claim with a test of significance, we need a box model.

⇒ The sampling distribution of the median is complicated if the original

population is not known to be normal.

• Another look at the sample data: 290 of the sample households had

incomes over $33,000.

⇒ Use a zero-one box model:

1 ↔ household in Metropolis with income over $33,000.

0 ↔ household in Metropolis with income under $33,000.
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• Null hypothesis: The median income in Metropolis did not change

between 2010 and 2016.

⇒ H0 : 50% of the tickets in the Metropolis box are 1 s.

• Alternative hypothesis: The median income in Metropolis increased

between 2010 and 2016.

⇒ HA : More than 50% of the tickets in the Metropolis box are 1 s.

• Test statistic:

z =
observed percentage−H0-expected percentage

SE(%)
.

This test statistic follows the normal distribution.

• The standard error is computed based on the null hypothesis. In this

case (a null hypothesis about percentages), then null hypothesis also

tells us what the SD of the box should be (if H0 is correct).

H0 : SD =
√

0.5× 0.5 = 0.5.

10



• Data: Simple random sample of 550 households, observed percentage

of 1 s
290

550
≈ 52.7%.

⇒ Observed value of z:

z∗ =
52.7%− 50%

(0.5/
√

550)× 100%
≈ 1.27.

.

• P-value: p∗ = area under the normal curve to the right of z∗ = 1.27:

p∗ = area


1.27

 ≈ 10.5%

(*) This is a one-tailed test because the alternative hypothesis specifies

new median > old median.

• Conclusion: The results are not statistically significant (at the 5%

significance level) — not strong evidence in support of Lex Luthor’s

claim. We fail to reject the null hypothesis. (But we don’t accept it.)
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Comments:

• The point of a test of significance is to see how strong the (statistical)

evidence is in favor of the alternative hypothesis.

• If the investigator believes that the parameter is specifically higher

or lower than the null-hypothetical value, then a one-tailed test is

appropriate. This means that the P value is computed by looking at

the area either to the the right (or to the left) of z, as in the previous

examples.

• If an investigator is testing whether the ‘truth’ is different than the null

hypothesis, but doesn’t have specific expectations as to higher or lower,

she should use a two-tailed test.

This means that to compute the P value from the observed value of the

test statistic z, we look at the area under the normal curve under both

tails: less than −|z| and greater than |z|.

? One-tailed tests produce lower P values for the same value of z∗. Be sure

that a one-tailed test is appropriate before citing one-tailed P values.
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The Gauss model for measurement error.

• Repeated measurements are made of the same quantity.

• Each measurement differs from the truth by chance error.

• The chance error is like drawing a ticket at random from a box—the

error box. Independent measurements correspond to draws done with

replacement.

• The error box has an average of 0, and usually an unknown SD. In

practice the SD of the error box is inferred from the SD of the data.

• In many cases, it is assumed that the error box has a normal distribution.

• If there is no bias, then the average of independent measurements

provides an accurate estimate of the truth.

• With bias: measured value = true value + bias + chance error.

This model can be used to test for bias, assuming that the quantity

being measured is known, or has a required value.
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Example 4. n = 900 measurements are made on a checkweight with known

weight = 100 grams. The average of the measurements is w = 100.05 grams

with a standard deviation of s = 0.54 grams.

Question: Do the scales need to be re-calibrated?

Use the Gauss model:

xj = 100 + bias + εj

where εj is the the chance error in the jth measurement.

H0 : bias = 0 (no bias, the scales are fine)

HA : bias 6= 0 (there is bias, the scales need to be recalibrated)

Box model: The measurements are like draws (with replacement) from the

error box. The null hypothesis gives the expected value for the average of

the measurements: EV = 100.

Test statistic: z0 =
100.05− 100

0.54/30
≈ 2.77

P-value: p = 100%− T (2.77) ≈ 0.6%.

Conclusion: Reject H0. There is bias — the scales need to be re-calibrated.
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Example 5.

Five readings are made of span gas with known CO concentration of 70 ppm,

using a spectrophotometer.

The measurements were: 74, 73, 69, 76, 70.

Question: Does the machine need to be calibrated?

Following the Gauss Model (for measurement error):

measured CO concentration = 70 ppm + bias + chance error

The chance error behaves like random draws from a box with average 0,

unknown SD and a probability distribution that is approximately normal.

• Null hypothesis: bias = 0. I.e., the spectrophotometer is properly

calibrated, the variation in the measured concentrations is due to chance

error.

• Alternative hypothesis: bias 6= 0. There is bias, but we don’t know

the direction of the bias. (The spectrophotometer needs to be calibrated.)
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The test:

• Average = 72.4; SD ≈ 2.58.

• Test statistic:
72.4− 70

2.57/
√

5
≈ 2.08.

• P-value:

p = area


2.08-2.08

 ≈ 4%

• Conclusion: The probability that the difference between observed and

expected averages is due to chance error is low. Recalibrate?

Comment: This is a two-sided test. (The one-sided p-value is 2%).
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Problems:

• Problem 1. Sample size is small, so sample SD is likely to underes-

timate the SD of the ‘error box’.

⇒ This is true for all sample sizes, but the difference is negligible when the

sample size is large.

• Solution 1. Use SD+ =

√
n

n− 1
×SD...

SD+ =
√

5/4× 2.57 ≈ 2.87.

• Problem 2. The test statistic

t =
observed− expected

SE
=

observed− expected

SD+/
√
n

doesn’t follow the normal distribution...

• Solution 2.... it does follow the t-distribution with n− 1 degrees of

freedom, as long as the box of errors has a normal distribution.
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• We find P-values for the t-distributions from a ‘t-table’.

• The t-table is read differently than the normal table:

– There is one row for every number of d.f.

– The columns correspond to specific P-values — they give the t-value

to the right of which the area under the t-curve is equal to the column

header.

Statistics, Fourth Edition
Copyright © 2007 W. W. Norton & Co., Inc.
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• The t-curves have the same general shape as the normal curve, but with

fatter tails.

• When the sample size (and d.f.) is large, the difference between the

t-curve and the normal curve becomes small (and perhaps negligible).
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Back to the example...

• t∗ =
72.4− 70

2.87/
√

5
≈ 1.87

• The P -value is estimated from the row in the t-table corresponding to

5− 1 = 4 degrees of freedom:

Statistics, Fourth Edition
Copyright © 2007 W. W. Norton & Co., Inc.

• t = 1.87 falls between the columns corresponding to 10% and 5%...

• Conclusion: The probability that the observed measurements are due

to chance error is between 10% and 20% (actually p ≈ 13.5%)... because

this is a two-sided test.

• There is probably no need to recalibrate — but this depends on the

operational protocols of the Lab that uses the spectrophotometers.
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